一、ASCII
很久很久以前,有一群人,他们决定用 8 个可以开合的晶体管来组合成不同的状态,以表示世界上的万物。
他们认为 8 个开关状态作为原子单位很好,于是他们把这称为"字节"。
再后来,他们又做了一些可以处理这些字节的机器,机器开动了,可以用字节来组合出更多的状态,状态开始变来变去。
他们看到这样是好的,于是它们就这机器称为"计算机"。
开始计算机只在美国用。八 位的字节一共可以组合出 255(2 的 8 次方-1)种不同的状态。
最早的计算机在设计时采用 8 个比特(bit)作为一个字节(byte),所以,一个字节能表示的最大的整数就是 255(二进制11111111=十进制255),如果要表示更大的整数,就必须用更多的字节。
比如两个字节可以表示的最大整数是65535
,4个字节可以表示的最大整数是4294967295
。
他们把其中的编号从 0 开始的 32 种状态分别规定了特殊的用途,一但终端设备或者打印机遇上这些约定好的字节时,就要做一些约定的动作。遇上 00x10,终端就换行,遇上 0x07,终端就向人们嘟嘟叫,例好遇上0x1b,打印机就打印反白的字,对于终端就用彩色显示字母。
他们看到这样很好,于是就把这些 0x20(十进制 32)以下的字节状态称为"控制码"。
他们又把所有的空格、标点符号、数字、大小写字母分别用连续的字节状态表示,一直编到了第 127号,这样计算机就可以用不同字节来存储英语的文字了。大家看到这样,都感觉很好,于是大家都把这个方案叫做 ANSI 的 “Ascii”编码(American Standard Code for Information Interchange,美国信息互换标准代码)。当时世界上所有的计算机都用同样的 ASCII 方案来保存英文文字。
由于计算机是美国人发明的,因此,最早只有 127 个字符被编码到计算机里,也就是大小写英文字母、数字和一些符号,这个编码表被称为 ASCII
编码,比如大写字母 A
的编码是 65
,小写字母 z
的编码是 122
。
后来,就像建造巴比伦塔一样,世界各地的都开始使用计算机,但是很多国家用的不是英文,他们用到的许多字母在 ASCII 中根本没有,为了也可以在计算机中保存他们的文字,他们决定采用 127 号之后的空位来表示这些新的字母、符号,还加入了很多画表格时需要用下到的横线、竖线、交叉等形状,一直把序号编到了最后一个状态 255。从 128 到 255 这一页的字符集被称"扩展字符集"。从此之后,贪婪的人类再没有新的状态可以用了,美帝国主义可能没有想到还有第三世界国家的人们也希望可以用到计算机吧!
二、GB2312
等中国人们得到计算机时,已经没有可以利用的字节状态来表示汉字,况且有 6000 多个常用汉字需要保存呢。但是这难不倒智慧的中国人民,我们不客气地把那些 127 号之后的奇异符号们直接取消掉,并且规定:一个小于 127 的字符的意义与原来相同,但两个大于 127 的字符连在一起时,就表示一个汉字,前面的一个字节(他称之为高字节)从 0xA1 用到 0xF7,后面一个字节(低字节)从 0xA1 到0xFE,这样我们就可以组合出大约 7000 多个简体汉字了。在这些编码里,我们还把数学符号、罗马希腊的字母、日文的假名们都编进去了,连在 ASCII 里本来就有的数字、标点、字母都统统重新编了两个字节长的编码,这就是常说的"全角"字符,而原来在 127 号以下的那些就叫"半角"字符了。
中国人民看到这样很不错,于是就把这种汉字方案叫做"GB2312"。GB2312 是对 ASCII 的中文扩展。
但是要处理中文显然一个字节是不够的,至少需要两个字节,而且还不能和 ASCII 编码冲突,所以,中国制定了 GB2312
编码,用来把中文编进去。
但是中国的汉字太多了,我们很快就就发现有许多人的人名没有办法在这里打出来,特别是某些很会麻烦别人的国家领导人(如朱镕基的“镕”字)。于是我们不得不继续把 GB2312 没有用到的码位找出来老实不客气地用上。 后来还是不够用,于是干脆不再要求低字节一定是 127 号之后的内码,只要第一个字节是大于 127 就固定表示这是一个汉字的开始,不管后面跟的是不是扩展字符集里的内容。结果扩展之后的编码方案被称为 GBK 标准,GBK 包括了 GB2312 的所有内容,同时又增加了近 20000 个新的汉字(包括繁体字)和符号。
后来少数民族也要用电脑了,于是我们再扩展,又加了几千个新的少数民族的字,GBK 扩成了 GB18030。从此之后,中华民族的文化就可以在计算机时代中传承了。
中国的程序员们看到这一系列汉字编码的标准是好的,于是通称他们叫做 "DBCS"(Double Byte Charecter Set 双字节字符集)。在 DBCS 系列标准里,最大的特点是两字节长的汉字字符和一字节长的英文字符并存于同一套编码方案里,因此他们写的程序为了支持中文处理,必须要注意字串里的每一个字节的值,如果这个值是大于 127 的,那么就认为一个双字节字符集里的字符出现了。那时候凡是受过加持,会编程的计算机僧侣们都要每天念下面这个咒语数百遍:
"一个汉字算两个英文字符!一个汉字算两个英文字符……"
因为当时各个国家都像中国这样搞出一套自己的编码标准,结果互相之间谁也不懂谁的编码,谁也不支持别人的编码,连大陆和台湾这样只相隔了 150 海里,使用着同一种语言的兄弟地区,也分别采用了不同的 DBCS 编码方案——当时的中国人想让电脑显示汉字,就必须装上一个"汉字系统",专门用来处理汉字的显示、输入的问题,但是那个台湾的愚昧封建人士写的算命程序就必须加装另一套支持 BIG5 编码的什么"倚天汉字系统"才可以用,装错了字符系统,显示就会乱了套!这怎么办?而且世界民族之林中还有那些一时用不上电脑的穷苦人民,他们的文字又怎么办?
真是计算机的巴比伦塔命题啊!
你可以想得到的是,全世界有上百种语言,日本把日文编到 Shift_JIS
里,韩国把韩文编到 Euc-kr
里,各国有各国的标准,就会不可避免地出现冲突,结果就是,在多语言混合的文本中,显示出来会有乱码。
三、Unicode
正在这时,大天使加百列及时出现了——一个叫 ISO (国际标谁化组织)的国际组织决定着手解决这个问题。他们采用的方法很简单:废了所有的地区性编码方案,重新搞一个包括了地球上所有文化、所有字母和符号的编码!他们打算叫它"Universal Multiple-Octet Coded Character Set",简称 UCS, 俗称 "UNICODE"。
因此,Unicode 应运而生。Unicode 把所有语言都统一到一套编码里,这样就不会再有乱码问题了。
UNICODE 开始制订时,计算机的存储器容量极大地发展了,空间再也不成为问题了。于是 ISO 就直接规定必须用两个字节,也就是 16 位来统一表示所有的字符,对于 ascii 里的那些"半角"字符,UNICODE 包持其原编码不变,只是将其长度由原来的 8 位扩展为 16 位,而其他文化和语言的字符则全部重新统一编码。由于"半角"英文符号只需要用到低8位,所以其高 8 位永远是 0,因此这种大气的方案在保存英文文本时会多浪费一倍的空间。
这时候,从旧社会里走过来的程序员开始发现一个奇怪的现象:他们的 strlen 函数靠不住了,一个汉字不再是相当于两个字符了,而是一个!是 的,从 UNICODE 开始,无论是半角的英文字母,还是全角的汉字,它们都是统一的"一个字符"!同时,也都是统一的"两个字节",请注意"字符"和"字节"两个术语的不同, "字节"是一个 8 位的物理存贮单元,而"字符"则是一个文化相关的符号。在 UNICODE 中,一个字符就是两个字节。一个汉字算两个英文字符的时代已经快过去了。
从前多种字符集存在时,那些做多语言软件的公司遇上过很大麻烦,他们为了在不同的国家销售同一套软件,就不得不在区域化软件时也加持那个双字节字符集咒语,不仅要处处小心不要搞错,还要把软件中的文字在不同的字符集中转来转去。UNICODE 对于他们来说是一个很好的一揽子解决方案,于是从 Windows NT 开始,MS 趁机把它们的操作系统改了一遍,把所有的核心代码都改成了用 UNICODE 方式工作的版本,从这时开始,WINDOWS 系统终于无需要加装各种本土语言系统,就可以显示全世界上所有文化的字符了。
但是,UNICODE 在制订时没有考虑与任何一种现有的编码方案保持兼容,这使得 GBK 与 UNICODE 在汉字的内码编排上完全是不一样的,没有一种简单的算术方法可以把文本内容从 UNICODE 编码和另一种编码进行转换,这种转换必须通过查表来进行。
如前所述,UNICODE 是用两个字节来表示为一个字符,他总共可以组合出 65535 不同的字符,这大概已经可以覆盖世界上所有文化的符号。如果还不够也没有关系,ISO 已经准备了 UCS-4 方案,说简单了就是四个字节来表示一个字符,这样我们就可以组合出 21 亿个不同的字符出来(最高位有其他用途),这大概可以用到银河联邦成立那一天吧!
Unicode 标准也在不断发展,但最常用的是用两个字节表示一个字符(如果要用到非常偏僻的字符,就需要 4 个字节)。现代操作系统和大多数编程语言都直接支持 Unicode。
现在,捋一捋 ASCII 编码和 Unicode 编码的区别:ASCII 编码是 1 个字节,而 Unicode 编码通常是 2 个字节。
字母 A
用 ASCII 编码是十进制的 65
,二进制的 01000001
;
字符 0
用 ASCII 编码是十进制的 48
,二进制的 00110000
,注意字符 "0"
和整数 0
是不同的;
汉字 中
已经超出了 ASCII 编码的范围,用 Unicode 编码是十进制的 20013
,二进制的01001110 00101101
。
你可以猜测,如果把 ASCII 编码的 A
用 Unicode 编码,只需要在前面补 0 就可以,因此,A
的Unicode 编码是 00000000 01000001
。
新的问题又出现了:如果统一成 Unicode 编码,乱码问题从此消失了。但是,如果你写的文本基本上全部是英文的话,用 Unicode 编码比 ASCII 编码需要多一倍的存储空间,在存储和传输上就十分不划算。
四、UTF-8
所以,本着节约的精神,又出现了把 Unicode 编码转化为“可变长编码”的 UTF-8
编码。UTF-8 编码把一个 Unicode 字符根据不同的数字大小编码成 1-6 个字节,常用的英文字母被编码成 1 个字节,汉字通常是 3 个字节,只有很生僻的字符才会被编码成 4-6 个字节。如果你要传输的文本包含大量英文字符,用 UTF-8 编码就能节省空间:
字符 | ASCII | Unicode | UTF-8 |
---|---|---|---|
A | 01000001 | 00000000 01000001 | 01000001 |
中 | x | 01001110 00101101 | 11100100 10111000 10101101 |
从上面的表格还可以发现,UTF-8 编码有一个额外的好处,就是 ASCII 编码实际上可以被看成是 UTF-8编码的一部分,所以,大量只支持 ASCII 编码的历史遗留软件可以在 UTF-8 编码下继续工作。
搞清楚了 ASCII、Unicode 和 UTF-8 的关系,我们就可以总结一下现在计算机系统通用的字符编码工作方式:
在计算机内存中,统一使用 Unicode 编码,当需要保存到硬盘或者需要传输的时候,就转换为 UTF-8编码。
UNICODE 来到时,一起到来的还有计算机网络的兴起,UNICODE 如何在网络上传输也是一个必须考虑的问题,于是面向传输的众多 UTF(UCS Transfer Format)标准出现了,顾名思义,UTF8 就是每次 8 个位传输数据,而 UTF16 就是每次 16 个位,只不过为了传输时的可靠性,从 UNICODE 到 UTF 时并不是直接的对应,而是要过一些算法和规则来转换。
受到过网络编程加持的计算机僧侣们都知道,在网络里传递信息时有一个很重要的问题,就是对于数据高低位的解读方式,一些计算机是采用低位先发送的方法,例如我们 PC 机采用的 INTEL 架构;而另一些是采用高位先发送的方式。在网络中交换数据时,为了核对双方对于高低位的认识是否是一致的,采用了一种很简便的方法,就是在文本流的开始时向对方发送一个标志符——如果之后的文本是高位在位,那就发送"FEFF",反之,则发送"FFFE"。不信你可以用二进制方式打开一个 UTF-X 格式的文件,看看开头两个字节是不是这两个字节?
用记事本编辑的时候,从文件读取的 UTF-8 字符被转换为 Unicode 字符到内存里,编辑完成后,保存的时候再把 Unicode 转换为 UTF-8 保存到文件:
浏览网页的时候,服务器会把动态生成的 Unicode 内容转换为 UTF-8 再传输到浏览器:
所以你看到很多网页的源码上会有类似的信息,表示该网页正是用的 UTF-8 编码。